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1. Introduction 

An important current trend for the ACT-R community is to apply cognitive model-
ling to real world problems like HCI (Byrne 2001) or human machine interaction 
(Gluck 2002). Important developments of the architecture that are necessary to do so 
are PM for integration to the task environment and new ways of goal management. 
An area that still needs attention is timing for operating human-machine systems. 
With this contribution we want to promote the application of cognitive architectures 
for engineering applications in dynamic human-machine systems (HMS). In this sec-
tion the notion of HMS and their dynamics are defined and the objective of this work 
is presented in detail.  

1.1 Human-Machine Systems 
Many machines (i.e. technical systems) are used by humans. The term human-
machine system denotes not only systems in which at least one human operates a 
technical system, but emphasizes the interaction between human and machine. Typi-
cally the technical system is fairly complex and shows a continuous dynamic behav-
iour that is influenced by interventions of its operator. While former research on 
HMS has focused on physical and ergonomic characteristics of the interaction for 
optimizing construction and force feedback properties, today the main topic is esti-
mating consequences of automation. Since technical systems are getting more com-
plex often cognition, memory span, and mental models are being of concern. Some 
typical examples of systems that are analysed and developed from an HMS view-
point are in high risk environments like the aviation domain, energy and power man-
agement (nuclear power plant), and chemical process operation. 
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1.2 Objective 
The objective for modeling behavior of HMS operators is to facilitate simulation 
based design support, training, and deployment in assistive technology.  

1.2.1 Simulation based design support 
In the development process of HMS� it is cost efficient to detect design flaws as early 
as possible. Thus tests are conducted with prototypes or even mockups instead of 
finished products. The use of simulations of the technical system is common practice 
in testing e.g. in automobile industry. Additionally simulations of cognitive capabili-
ties of the potential user are effective for questions about human reliability (Amal-
berti 2002). They can be efficient in large scale multi-user scenarios (computer gen-
erated forces: Jones et al 1999) or when a single prototype test is very expensive (e.g. 
aircraft cockpit automation: Lüdtke 2002). 

1.2.2 Training 
Insights from simulations of different strategies in cognitive models can be measures 
for �difficulty of learning each strategy, efficiency of using each strategy once lear-
ned, generality of each strategy to the range of [�] problems, retention of the strate-
gies, and transfer� (Rittle-Johnson & Koedinger 2001). Although stated for simple 
arithmetic tasks these measures can be used to decide which strategy to train for op-
erating HMS. 

1.2.3 Deployment in assistive technology 

Besides using simulations of cognitive processes as knowledge based support system 
(perfect cognitive models making no errors are expert systems) realistic (error mak-
ing) cognitive models have the potential to be deployed in adaptive automation sys-
tems (Parasuraman et al 2000). Such systems adapt their behavior to external condi-
tions normally detected in the technical system or its environment. Taking not only 
the technical or environmental state but also that of the operator into account leads to 
a more effective task allocation between automation and human operator. Realistic 
cognitive models running parallel to the HMS can be used to predict current or future 
operator states. A famous example for this kind of automation are intelligent tutoring 
systems (e.g. Leuchter & Urbas 2002). 

The rationale of the use of the cognitive architecture ACT-R is to make the modeling 
process more efficient by introducing a priori constraints on memory and processing. 

1.3 Dynamics 
The need for timing arises from the dynamics of the operated system. Thus for this 
report the most important property of an HMS is its dynamics. Many approaches for 
conceptions on dynamics of HMS exist. Often they are directed by control theory or 
complex problem solving. Since they do not fully fit in modeling timing in this paper 
a scheme is proposed that is derived from experience gained modeling cognitive pro-
cesses of air traffic controllers (Niessen et al. 1998) and process control. 

This approach is presented object-oriented. Figure 1 shows the framework as a UML 
diagram (unified modeling language, common used in software engineering).  

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Leuchter & Urbas 39 



 

1..*

1

1..* 

0..*

1..*Operator 

Task Environment

+navigate:cost 
Object

-state:Vector

+inspect:cost

Task Immediate 

Interruptible 

goal

Aircraft Constellati

Process Variable Gr

 
Figure 1: Framework for dynamics. 

The diagram shows three columns. The left one is the defines the system boundary: 
The environment and the modeled subject(s). The middle column shows the concept 
itself. The right column shows concretizations. Above: in two domains (green): en-
route air traffic control (ATC) and process control (PC e.g. chemical plant), below: 
concretizations of tasks. 

The task environment consists of a number of objects. Example for objects are air-
craft or their constellations (ATC) and process variables such as temperature or pres-
sure (PC). One or more operators are responsible. An operator is assigned one or 
more tasks to fulfill. Every task is associated with exactly one object. A task is con-
sequently associated with a goal. Tasks or more exact fulfillment of a task can either 
interruptible by other tasks or has to be immediately worked off.  

Dynamics results first from new objects or tasks appearing in the situation. But for 
most tasks in HMS the state of the objects is also needed. It can be acquired by the 
HMS interface (often a screen). To avoid confusion not all information is normally 
displayed. But for the execution of a certain task an unusual information can be nee-
ded. Then the object has to be inspected and that information gathered (e.g. trans-
ponder code on ATC screen). Some interfaces are designed in several screens (e.g. 
control room displays for PC) so that the operator has possibly to navigate in the task 
environment to the needed information�s display. The second reason for dynamics is 
the changing of objects state. Change can be initiated from actions of the operator 
and from environmental interference. Both result in a more or less delayed change 
behavior. 

The treatment of this framework is that a task environment has a certain number of 
objects at a time and following a number of tasks/goals that are valid and have to be 
fulfilled at any one time (homeostatic and parallel goals, Aasman 1995). The charac-
teristics is the amount of them (interruptible separated from immediate), the change 
rate and expenses for navigation/inspection. One application of this framework is a 
comparison between different domains/tasks to estimate the need to use working 
memory in favor for external memory (HMS interface screen) on the basis of inspec-
tion/navigation cost and the number of continuous tasks. 
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This framework of describing dynamics is used in the following section to discrimi-
nate between certain task environments. 

2. Task Environments 

In this section the dynamics of several interactive task environments is discussed: car 
driving, en-route air traffic control, human-computer interaction, aircraft piloting, 
interactive computer games, and process control in chemical plants. The conse-
quences for scheduling of subtasks are deduced. 

Car driving: Although driving is not a top-down activity it is composed of several 
subtasks that are all active at the same time (�homeostatic�, Aasmann 1995). Cnos-
sen (2000, p. 40) and Salvucci (2001) enumerate subtasks of driving as: speed con-
trol, steering, visual search, and distance keeping. Car driving is a highly dynamic 
task because the state of the vehicle and its environment changes constantly possibly 
without prior warning.  

Apart from modern automation like adaptive cruise control there is not much need 
for a memory for situation awareness because the situation can be easily directly per-
ceived at environment (objects are primarily other cars) and instruments.  

En-route air traffic control: Controllers monitor the movement of aircraft on radar 
screens. Although the traffic is planned in advance weather conditions or other unex-
pected events influence plan achievement. Thus controllers have to command pilots 
for other direction, speed or altitude to avoid dangerous approximation. The situation 
is dynamic: New objects (aircraft) enter the sector, the state of the objects (position, 
altitude, speed, direction) changes normally upon request of the controller. The 
change rate of tasks is rather low, because new aircraft enter a controlled area about 
every some minutes. Nevertheless it is necessary to monitor aircraft because pilots 
could not exactly perform commands or deviate from their routes. Controllers need a 
representation of the current situation in order to achieve anticipation, conflict reso-
lution and monitoring (Niessen et al. 1998). 

Human-computer interaction: HCI does not necessary include the notion of dy-
namics: Objects that are observed are GUI-elements that display values. Depending 
on the model that is displayed they are changing and have to be monitored. Although 
many dynamic human-machine-systems have computer mediated interfaces or can be 
used in PC based simulations there are no direct results for cognitive models of HCI. 

Aircraft piloting: Through the introduction of fly by wire concepts and automation 
technology in the modern glass cockpit pilots mostly fulfill a supervisory control 
task. Objects are the measure instruments and displays. The subtasks are precisely in 
hierarchical standard operating procedures defined. A major part of all human factors 
errors in aviation results in lack of situation awareness in that the current mode of the 
automated system is misinterpreted (e.g. Lüdtke et al. 2002). An interpretation on the 
basis of the proposed dynamic modeling framework is that procedures have to be 
treated as objects which was the way how an existing ACT-R pilot model was real-
ized (Schoppek et al. 2000). 

Interactive computer games: Similar to car driving new objects in interactive com-
puter games can occur and change their state without the player�s interaction. In first 
person shooter games (Laird 2001) the most important feature is the position of ob-
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jects (enemies or other characters). Since navigation is achieved through movement 
in virtual space inspection cost for objects are high. Because of this and to make de-
liberative behavior possible it is necessary to maintain a mental representation of the 
virtual world.  

Process control in chemical plants: In contrast to computer games, air traffic con-
trol and car driving the super structure of the environment does in general not 
change, i.e. the pure number of objects does normally not change. Nevertheless, due 
to start up and shut down of single unit operations and the possibility to change the 
interconnection between the unit operations the relation between the objects and the 
resulting dynamic behavior of the process is subject to change. Furthermore the cour-
se of variables in time is most often not predictable by linear extrapolation. In conse-
quence a mental representation of the current relations between the objects and a 
image of the history of the process is necessary for the supervisory control tasks. 

Thus operators need not only a mental representation of the objects� values but also 
of their dynamical features as their state. Operators typically have several displays in 
the control room and one monitor can display several different views. They use 
structural presentations of the chemical plant where the values of process variables 
are shown and trend pictures of the development of a variable over time. 

2.1 Requirements for Scheduling 
There are different characteristics of dynamic task environments that demand differ-
ent processing of the dynamics. Within the proposed framework dynamics is handled 
through composition of goals, the scheduling of their execution, memory for objects� 
state (situation awareness), and update of objects� state (which can be seen as one of 
the goals). 

Since providing a memory with features such as adaptive decay and partial matching 
for a situation�s objects� state can be easily achieved with modern production sys-
tems like ACT-R (Anderson & Lebiere 1998) we focus on goal scheduling. 

The task characteristics of HMS environments is either more reactive or more delib-
erative. In reactive task environments objects and associated tasks are perceived, new 
goals are generated, and executed. In the deliberative case subtasks can be postponed 
and subtasks have different urgency and priority. A memory for postponed tasks and 
strategies for scheduling them is needed.  

The resulting multiple tasking is not the same as that of Lee & Taatgen (2002). They 
report on multi-tasking in the time gaps between action in asynchronous cognitive 
subsystems. Also scheduling as a task itself (e.g. Nellen 2002) is not the scope of this 
treatment. The time resolution is much less fine than in the task described by Gray et 
al. (2000). 

For car-driving scheduling of tasks/goals does not need sophisticated algorithms 
because they are equally important. If secondary tasks like cell-phone dialing are 
added breakpoints between the tasks have to be defined (Salvucci 2001). 

In en-route air traffic control controllers have too limited resources to monitor eve-
ry aircraft on the screen. Thus they have to schedule their updating sequence, antici-
pating, and conflict resolution. Niessen et al. (1998) suggest an algorithm that takes 
inferred importance and two timing measures into account: Every object stores a 
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timestamp when it was last updated, and during anticipation a duration until an event 
(e.g. time to collision) is computed. Other examples for cognitive models with multi-
tasking exist (AMBR: Gluck & Young 2001, and Lee & Taatgen 2002) 

Most HCI problems can be formalized in hierarchical task analysis models like 
GOMS. Thus there is no need to schedule between subtasks. The situation changes 
when there are several primary tasks (e.g. Salvucci 2001) or when the displays show 
the state of a dynamic human-machine-system (e.g. air traffic control: Freed 1998) 

In aircraft piloting there are procedures to be executed. Multi-tasking and schedul-
ing are only needed on a very top level (sequencing of procedures: starting, follow-
ing way points, initiating landing). One additional requirement is the handling of 
asynchronous air traffic control commands. 

Interactive computer games: A multitude of parallel goals exist that have to be 
examined and according to the current situation postponed or pre-drawn. To do so 
the player has to take both his or her memory and the perceived situation into ac-
count. 

Process control in chemical plants: Depending on the inferred situation changes of 
goals have to be made. A major concern is to be able to suspend and to resume tasks. 
An operator model has to store the points where operation on one task was left and 
another was resumed. 

2.1.1 Timed Conditions 
If cognitive models are applied in engineering it is usually the aim to predict fre-
quencies of erroneous production selection or memory slips or execution or learning 
durations for the whole task (e.g. within the GOMS framework). But there are also 
errors according timing and thus the need not only to model adaptive sequences of 
production selection but also the use of time and duration in conditions of produc-
tions. 

An example for such a modeling demand is in process control: Sometimes a task has 
to be abandoned when too much time has elapsed. Thus duration has to be recalled in 
productions� conditions. To achieve this the system�s real time would have to be re-
trieved and stretched or compressed according to the current workload. 

2.1.2 Objects Getting More Important Over Time 
In (en-route) air traffic control scheduling depends on timing: It is important to up-
date the state (mostly position and altitude) of the objects as often as possible. But 
due to the other subtasks aircraft can only be monitored from time to time. But the 
need to update an objects� features in the mental representation gets bigger the longer 
the object has not been modified. Thus decay of activation depending on accesses to 
chunks is a contrary concept.  

Such chunks representing such special elements of the situation under supervisory 
control have to be used in a certain way: Special productions have to refresh their 
activation depending on the current need to update it. Niessen et al. achieve this be-
havior through direct manipulation of activation parameters from outside ACT-R in 
the production-cycle-hook. 
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3. Conclusions: Extensions to the Architecture 

On the basis of a brief review of this tasks and their requirements for scheduling and 
multi-tasking some needs for ACT-R can be drafted to fit it to modeling operator 
cognition in complex dynamic human-machine systems. We are currently imple-
menting these extensions for modeling process control of chemical plants. 

3.1 Linking and Embedding to Task Environment 
Although ACT-R/PM made it possible to connect a model with a task environment 
there are problems for engineering: Normally there exists a big simulation or an API 
not accessible from LISP or making it hard to create a GUI within the LISP process. 
While one can cope with this restriction (e.g. Ritter et al. 2002) it would be efficient 
to embed an ACT-R model into a high-level framework for the �normal� control of a 
system and only execute a specialized ACT-R sub model for questions like memory 
errors from there. This would help controlling a real world situation with a simple 
outer model (without ACT-R) and only pay attention to special situations for that a 
more precise ACT-R model would be built. 

Inside the ACT-R model there were less need for multi-tasking and scheduling and 
additionally communication with the task environment could be achieved through 
appropriate instantiation of chunks in the model during its start-up. 

3.2 Recall of Duration 
A new function for recalling duration information has to be added. Setting a named 
reference point that is stored as chunks in the working memory and thus can be for-
gotten or confused allows for retrieving elapsed time since setting it. 

Perception of time is depended to the workload and the �mode�: If concentrating on 
duration measurement high workload leads to underestimating, if recall is retrospec-
tive high workload leads to overestimating elapsed duration. Recall has to be possi-
ble in both modes and must be stretched or compressed according to subgoaling. 

3.3 Scheduling 
Tasks are to be represented and executed as chunks from a ACT-R �middleware� 
such as ACT-GOMS (Schoppek et al. 2000). But in contrast to ACT-GOMS it must 
include a scheduler for subtasks. They are to be marked interruptible and immediate 
during modeling time. Priority and urgency like in PDL could further guide the sche-
duling process. 

An additional requirement in chemical plant control is that some tasks may not be 
carried out in parallel with others and that there are other dependencies possible. But 
a scheduler should not take also such information into account but it had to be mod-
eled explicitly because this is an important source of control errors. 
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